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Inference on Haplotype Effects in Case-Control Studies Using Unphased
Genotype Data
Michael P. Epstein1 and Glen A. Satten2
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A variety of statistical methods exist for detecting haplotype-disease association through use of genetic data from
a case-control study. Since such data often consist of unphased genotypes (resulting in haplotype ambiguity), such
statistical methods typically apply the expectation-maximization (EM) algorithm for inference. However, the ma-
jority of these methods fail to perform inference on the effect of particular haplotypes or haplotype features on
disease risk. Since such inference is valuable, we develop a retrospective likelihood for estimating and testing the
effects of specific features of single-nucleotide polymorphism (SNP)-based haplotypes on disease risk using unphased
genotype data from a case-control study. Our proposed method has a flexible structure that allows, among other
choices, modeling of multiplicative, dominant, and recessive effects of specific haplotype features on disease risk.
In addition, our method relaxes the requirement of Hardy-Weinberg equilibrium of haplotype frequencies in case
subjects, which is typically required of EM-based haplotype methods. Also, our method easily accommodates missing
SNP information. Finally, our method allows for asymptotic, permutation-based, or bootstrap inference. We apply
our method to case-control SNP genotype data from the Finland–United States Investigation of Non-Insulin-
Dependent Diabetes Mellitus (FUSION) Genetics study and identify two haplotypes that appear to be significantly
associated with type 2 diabetes. Using the FUSION data, we assess the accuracy of asymptotic P values by comparing
them with P values obtained from a permutation procedure. We also assess the accuracy of asymptotic confidence
intervals for relative-risk parameters for haplotype effects, by a simulation study based on the FUSION data.

Introduction

Association-based statistical methods are likely to be re-
quired for the successful mapping of a genetic variant that
influences a complex disease. Such methods generally are
more powerful than linkage-based methods for identify-
ing such a genetic variant (Risch 2000; Botstein and Risch
2003), particularly when the variant has only a moderate
effect on disease risk (Risch and Merikangas 1996). In
general, association-based methods attempt to identify a
genetic variant that either directly predisposes to disease
or is in linkage disequilibrium with such a causal variant.
Since linkage disequilibrium among variants exists only
over short genetic distances, association methods require
a high-density map of markers for successful identification
of a disease-predisposing variant. Therefore, many asso-
ciation analyses utilize a high-density map of biallelic
SNPs, such as that published by the International SNP
Map Working Group (2001).

A popular SNP-based association approach for disease
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mapping consists of collecting SNP and disease data from
samples of unrelated individuals through use of a case-
control study design. For such a design, one can apply
traditional statistical methods to assess association be-
tween SNP allelic variants and disease. Power to detect
such association will decrease as linkage disequilibrium
between the tested variant and the disease-predisposing
variant decreases. Since linkage disequilibrium exists over
short genetic distances, these traditional association tests
likely have limited power to identify disease-predisposing
variants. Therefore, many studies utilize modified case-
control association tests based on SNP-based haplotypes,
which are specific combinations of allelic variants at a
series of tightly linked SNPs on the same chromosome.
Haplotype-based association methods should be inher-
ently more powerful for gene mapping than methods
based on single SNPs, since haplotype-based methods
incorporate linkage disequilibrium information from
multiple markers. Simulation studies (Akey et al. 2001;
Zaykin et al. 2002) support this theory. In addition,
unlike single SNPs, haplotypes can identify unique
chromosomal segments that contain disease-influencing
variants.

Haplotypes have an additional advantage over single
SNPs when multiple disease-susceptibility variants oc-
cur within the same gene. Morris and Kaplan (2002)
showed that haplotype-based association methods are
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more powerful than analogous allele-based methods
when each susceptibility variant originates and predis-
poses to disease independently of the other susceptibility
variants. Haplotypes are also useful when disease arises
from the interaction of multiple cis-acting susceptibility
variants found within the gene. Evidence suggests that
a variety of diseases originate from multiple variant in-
teraction, including neural tube defects (Joosten et al.
2001) and prostate cancer (Tavtigian et al. 2001). For
such diseases, haplotype-based association methods will
be preferable over single SNP-based association meth-
ods, since the former methods allow for the joint effect
of multiple genetic variants, whereas the latter do not.

One difficulty in applying haplotype-based association
methods to disease data is that the SNP data from the
cases and controls often consist of unphased genotype
data, which results in haplotype ambiguity. To resolve
the ambiguity, one can apply molecular haplotyping tech-
niques (Michalatos-Beloin et al. 1996; Eitan and Kashi
2002), but these procedures require substantial amounts
of laboratory work. Alternatively, one can apply the ex-
pectation-maximization (EM) algorithm (Dempster et al.
1977) to infer haplotype frequencies from genotype data
(Excoffier and Slatkin 1995; Hawley and Kidd 1995;
Long et al. 1995), under the assumption that such fre-
quencies are in Hardy-Weinberg equilibrium (HWE)
within the sample. The EM algorithm can accommodate
several SNP loci and does not require knowledge of re-
combination between SNPs. Fallin and Schork (2000)
demonstrated the EM algorithm’s accuracy for estimat-
ing SNP-based haplotype frequencies using a wide variety
of simulation designs.

For a case-control study design, several haplotype as-
sociation methods exist that utilize EM-inferred hap-
lotype frequencies. Early approaches (Zhao et al. 2000;
Fallin et al. 2001) applied omnibus tests that compared
estimated haplotype frequencies between cases and con-
trols. Although such tests assess overall association be-
tween haplotypes and disease, they do not provide in-
ference on the effects of specific haplotypes or haplotype
features. Such inference is valuable for facilitating the
identification of specific chromosomal segments that
contain disease-predisposing variant(s). Therefore, we
may wish to estimate and test the disease-predisposing
effect of either a specific haplotype or a specific region
shared by a subset of haplotypes. In addition, we might
also wish to determine whether such chromosomal seg-
ments of interest act on disease in a multiplicative, dom-
inant, or recessive fashion.

To address these issues, Schaid et al. (2002) and Zaykin
et al. (2002) developed tests of specific haplotype effects
based on the prospective likelihood of disease, condi-
tional on the possible haplotypes. Both methods treat
haplotypes as covariates in a regression model. To ac-
commodate subjects with ambiguous haplotype covari-

ates, these methods compute the expected value of the
covariates conditional on the subject’s genotype data,
using EM-inferred haplotype frequencies estimated in the
pooled sample of cases and controls (under the assump-
tion of HWE). Although appropriate under the null hy-
pothesis of no haplotype-disease association, haplotype
estimation in the pooled sample is problematic under the
alternative hypothesis, since the frequencies are stratified
with respect to disease status. Even if the control and
case haplotype frequencies are separately in HWE, this
stratification violates the EM algorithm’s assumption of
HWE in the pooled sample, which may bias estimates of
haplotype effect.

Stram et al. (2003b) investigated the bias in estimates
of haplotype effect when naively using the prospec-
tive likelihood with case-control data while assuming
HWE in the pooled sample. These authors determined
that bias in haplotype-effect estimates were often pro-
nounced when the genotype data failed to accurately
predict the underlying haplotype-pair data. To quantify
haplotype predictability from genotype data, the hap-
lotype uncertainty measure of Stram et al. (2003a),

( )Var E N H FG[ ]{ }h
2R { ,h ( )Var N H[ ]h

was used, where denotes the number of copiesN (H)h

of haplotype h in haplotype pair H, and G denotes
genotype data. Stram et al. (2003b) determined that the
effect of a particular haplotype on disease is often biased
when .2R � 0.9h

Since estimation of odds ratios for specific haplotypes
or haplotype features is desirable, Stram et al. (2003b)
and Zhao et al. (2003) developed separate approaches
for both estimating and testing effects of haplotype fea-
tures through use of case-control genotype data. Stram
et al. (2003b) conditioned a prospective likelihood on
known sampling probabilities of case and control sub-
jects in the population. Although we might know such
sampling probabilities for either a population-based or
nested case-control–based study, we are unlikely to know
these quantities in general. Zhao et al. (2003) applied a
prospective estimating-equation approach that required
only the HWE assumption of haplotype frequencies in
the control sample. However, this approach estimated
control haplotype frequencies using control genotype
data only. As we will show, case genotype data can con-
tribute information for improving the efficiency of hap-
lotype frequency estimates in the control sample.

We propose a retrospective likelihood method for hap-
lotype inference in a case-control study using unphased
SNP genotype data that allows for both testing and es-
timation of haplotype effects. Our method relaxes the
assumption of HWE in the case sample and easily ac-
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commodates missing SNP genotype information. We be-
lieve our method has advantages over the methods of
Stram et al. (2003b) and Zhao et al. (2003). Unlike Stram
et al.’s (2003b) method, our method does not require
prior knowledge of the sampling probabilities of case and
control subjects in the population. Compared with the
estimating-equation approach of Zhao et al. (2003), our
method’s likelihood-based framework may yield more
efficient parameter estimates for a properly specified
model and allows one to apply criteria such as the Akaike
information criterion (AIC) (Akaike 1985) for model se-
lection. Our method also has an additional benefit over
the approach of Zhao et al. (2003), in that we estimate
control haplotype frequencies through use of both con-
trol and case genotype data, which should increase sta-
tistical efficiency.

In subsequent sections, we develop the retrospective
likelihood and describe estimation procedures and sta-
tistical tests for inference. For estimation, we maximize
the retrospective likelihood using an expectation-con-
ditional-maximization (ECM) algorithm, as described
by Meng and Rubin (1993). We illustrate the use of our
method by applying it to unphased SNP genotype data
from the Finland–United States Investigation of Non-
Insulin-Dependent Diabetes Mellitus (FUSION) Genet-
ics study (Valle et al. 1998). Using the FUSION data,
we assess the accuracy of asymptotic P values by com-
paring them to P values obtained from a permutation
procedure. We also assess the accuracy of asymptotic
CIs for relative-risk parameters for haplotype effects,
by a simulation study based on the FUSION data.

Methods

Assumptions and Notation

Assuming a retrospective study design, we collect a
sample of n unrelated subjects, consisting of c controls
and d cases. We let D denote a subject’s disease outcome
indicator (where 1 indicates disease and 0 indicates no
disease). We assume that the n subjects are each genotyped
at a series of L SNPs. Given complete genotype infor-
mation at each locus, the number of possible multi-SNP
genotypes in the sample is 3L. If we allow for missing SNP
genotype data (under the assumption that subjects with
missing genotype data at a SNP locus must lack both
alleles), then this number increases to 4L possible multi-
SNP genotypes. For either situation, the total number of
possible haplotypes is 2L. We let denote a subject’sG p g
multi-SNP genotype and denote the subject’s′H p (h,h )
pair of haplotypes h and h′. By allowing some genotypes
g to include missing SNP information, we may assume
that is known for each subject. However,G p g H p

is unknown if the subject is heterozygous at 11 SNP′(h,h )
or if any SNP genotype is missing. We let denote theS(g)

set of haplotype pairs consistent with′{H p (h,h )} G p
. We adopt the convention that directly′g (h,h ) � S (g)

implies that .′ ′(h ,h) � S (g) for h ( h

Observed-Data Likelihood

Our approach constructs the retrospective likelihood
of the observed genotype data (which we define as “the
observed-data likelihood,” or LOBS) as a function of the
underlying haplotype data, conditional on disease status.
We write LOBS as a product of multinomials of the ge-
notype data:

c dg gL p Pr (G p gFD p 0) Pr (G p gFD p 1) .[ ] [ ]�OBS
g

Here, and are thePr (G p gFD p 0) Pr (G p gFD p 1)
probabilities of genotype g in the control and case sam-
ples, respectively. cg and dg denote the numbers of control
subjects and case subjects with genotype g in the sample.

We can also express the likelihood LOBS as a function
of haplotype pairs by writing andPr (G p gFD p 0)

as the sum of the haplotype-pair fre-Pr (G p gFD p 1)
quencies that are consistent with genotype g. Let p p′hh

and′ ′Pr [H p (h,h )FD p 0] r p Pr [H p (h,h )FD p′hh

denote the frequency of haplotype pair in′1] H p (h,h )
the control and case populations, respectively. We can
write the frequency of genotype g as Pr [G p gFD p

among control subjects and0] p � p Pr [G p′′ hh(h,h )�S(g)

among case subjects. With thisgFD p 1] p � r ′′ hh(h,h )�S(g)

parameterization, LOBS becomes

c dg g

L p p r . (1)′ ′� � �OBS hh hh( ) ( )′ ′g h,h �S g h,h �S g( ) ( ) ( ) ( )

To facilitate inference of particular haplotype features,
define

′[ ]Pr D p 1FH p (h,h )
v p′hh ′[ ]Pr D p 0FH p (h,h )

as the odds of disease for haplotype pair .′H p (h,h )
Following Satten and Kupper (1993) and Satten and
Carroll (2000), we note that

′[ ]Pr H p (h,h ),D p 1
r p′hh [ ]� Pr H p (h ,h ),D p 11 2

h ,h( )1 2

′[ ]v Pr H p (h,h ),D p 0′hh v p′ ′hh hhp p .
[ ]� v Pr H p (h ,h ),D p 0 � v ph h 1 2 h h h h1 2 1 2 1 2

h ,h h ,h( ) ( )1 2 1 2

(2)

As a result, specification of and fully determinesp v′ ′hh hh
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. Using equation (2), we rewrite LOBS in equation (1)r ′hh

as

c dg g� � p � v p′ ′ ′hh hh hh( ) ( )′ ′g h,h �S g h,h �S g( ) ( ) ( ) ( )

L p (3)OBS d� v ph h h h( )1 2 1 2
h ,h( )1 2

We wish to perform haplotype inference using the re-
parameterized LOBS in equation (3). Unfortunately, such
inference is problematic when data consist of unphased
genotypes. If external information is available that al-
lows unambiguous determination of haplotype given ge-
notype (e.g., if it is known that only a small number of
haplotypes occur in a population and that no two hap-
lotype pairs result in the same genotype), then canS(g)
be restricted to the appropriate haplotype combinations
and equation (3) can be used directly. However, without
such external information and given genotype data only,
no information exists to distinguish different haplotype
pairs (h,h′) found in the same . As a result, we cannotS(g)
estimate all the and as separate parameters.p v′ ′hh hh

To resolve this estimation problem, we must impose
conditions to ensure identifiability of all the andp ′hh

. For , we assume the haplotype pairs in the controlv p′ ′hh hh

population are in HWE, such that

′[ ]p p Pr H p (h,h )FD p 0 pp p ,′ ′hh h h

where ph denotes the frequency of haplotype h in the
control population. We expect this HWE assumption in
control subjects to hold when the disease is rare and
when the susceptibility haplotypes have relatively low
penetrance. If a rare highly penetrant haplotype exists,
it should result in only a minor departure from the HWE
assumption in the control population. If the disease is
common or a common highly penetrant haplotype exists
(again resulting in a common disease), then one would
likely not employ a case-control study.

Although we assume HWE of the haplotypes in the
control population, note that our method does not as-
sume that haplotypes in the case sample are in HWE.
We explicitly show this by rewriting in equation (2)r ′hh

as

v p p′ ′hh h h′[ ]r p Pr H p (h,h )FD p 1 p . (4)′hh � v p ph h h h1 2 1 2
h ,h( )1 2

Equation (4) clearly shows that the haplotype frequen-
cies in the cases do not follow HWE unless the effect of
individual haplotypes on disease acts in multiplicative
fashion (i.e., , where vh is the odds of disease,v p v v′ ′hh h h

given haplotype h). We describe the benefits of relaxing
this HWE assumption in the “Discussion” section.

We characterize identifiable models for in appen-v ′hh

dix A. To facilitate modeling, we write ,
T ′X bhhv p e′hh

where b is an R-dimensional vector of disease relative-
risk parameters, and is an R-dimensional design vec-X ′hh

tor that relates haplotype combinations to b. We provide
examples of for dominant, recessive, multiplicative,X ′hh

and general models for the effect of a single haplotype
in later sections.

If we assume an identifiable model for all andv ′hh

impose HWE conditions in the control population, we
can rewrite LOBS in equation (3) as

T ′c X b dg hh g� � p p � e p p′ ′h h h h( ) ( )′ ′g h,h �S g h,h �S g( ) ( ) ( ) ( )

L p . (5)TOBS ′X b dhh� e p p ′h h( )′h,h( )

In this article, we will use LOBS in equation (5) for hap-
lotype inference. Given haplotype ambiguity, inference
of haplotype effect on disease may proceed by applying
a missing-data maximization algorithm to LOBS. Instead
of employing the popular EM algorithm, we apply an
ECM algorithm to this likelihood (Meng and Rubin
1993) The ECM algorithm is a variant of the EM al-
gorithm that replaces a (potentially unstable) joint max-
imization step of p and b with several computationally
simpler conditional maximization steps. In appendix B,
we provide details of the ECM algorithm for maximizing
LOBS in equation (5).

Asymptotic Inference Methods

Using LOBS, we can test hypotheses about or construct
estimators of relative-risk parameters b (e.g., H :b p0

vs. ). For testing hypotheses, we first consider0 H :b ( 0A

two statistics that appeal to asymptotic theory: a like-
lihood-ratio (LR) statistic and a robust score statistic.
The LR statistic has the form ,LR p 2 log (L /L )H HA 0

where and denote the value of LOBS under theL LH HA 0

alternative and null hypotheses, respectively. If we as-
sume that no haplotype has estimated frequency 0 in the
sample, the LR statistic asymptotically follows a x2 dis-
tribution under H0, with degrees of freedom equal to
the number of tested regression coefficients. We note
here that, for a model in which each possible haplotype
has a multiplicative effect on disease risk, the LR statistic
is equivalent to the method of Fallin et al. (2001) and
to an approach proposed by Zhao et al. (2000).

We can also use a score statistic to test hypotheses
about relative-risk parameters. We use the robust score
statistic of Boos (1992). Score statistics require the de-
rivatives of with respect to b and ph. For b,log (L )OBS

we obtain

( )� log LOBS — —
{U p d (X � X) ,�b g g

�b g
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where

T ′X bhh� p p e X′ ′h h hh′— (h,h )�S(g)X p Tg ′X bhh� p p e′h h′(h,h )�S(g)

and

T ′X bhh� p p e X′ ′h h hh′— (h,h )X p .T ′X bhh� p p e′h h′(h,h )

Calculation of the score statistic requires that each ph

have estimated frequency 10 (otherwise, the information
matrix is not invertible). If this requirement does not
hold, we condition on the true haplotype frequency
equaling 0 for each haplotype with estimated frequency
0. With this choice, if there are J haplotypes with non-
zero frequency (assumed, without loss of generality, to
be labeled 1–J), we rewrite all but one of the nonzero
values of ph as

the
p p J�1h

′th1 � � e
′h p1

and set the final nonzero value of ph to be

1
p p .J�1h

′th1 � � e
′h p1

We then calculate the score function for astr

� I(h p r)p ′( )� log L hOBS ′(h,h )�S(g){ U p 2 c � 1�t gr [ ]�t � p p ′gr h h′(h,h )�S(g)

T ′X bhh� I(h p r)p e′h′(h,h )�S(g)�2 d� Tg ′X bhh[ � p p e′g h h′(h,h )�S(g)

T ′X bhh� I(h p r)p e′h′(h,h )� .T ′X bhh ]� p p e′h h′(h,h )

The robust score statistic also requires calculation
of the observed information matrix H, which we eval-
uate by taking numerical derivatives of andU U pb t

. For convenience, we write H in block-T(U ,U , … ,U )t t t1 2 J�1

factored form

H Hbb btH p .( )H Htb tt

The robust score statistic also requires evaluation of the
empirical variance-covariance matrix S of the score func-
tion . Using H and S, we calculate the robustTU p (U ,U )b t

variance of as ,TU V p (I , � H H )S(I , � H H )b R bt tt R bt tt

where is an identity matrix with dimension equal toIR

the dimension of b. We then use and V to constructUb

robust score statistics to test b. For example, we construct
a global score statistic for testing asH :b p 0 S p0

, which asymptotically follows a x2 distri-T �1U V Ubp0 bp0

bution under H0 with degrees of freedom equal to R (the
number components in b).

Choosing whether to apply an LR or score statistic
for inference depends on many factors. One issue that
affects this selection concerns the observed number of
estimated haplotype frequency parameters in the(p )h

sample. The calculation of score tests and asymptotic
CIs requires inverting the information matrix, which has
dimension equal to one less than the number of observed
haplotypes plus the number of parameters in b. When
this number is large, the matrix inversion may be nu-
merically difficult to perform. The ECM algorithm used
to maximize LOBS does not require inversion of large
matrices (see appendix B), so we can easily calculate an
LR statistic for inference. However, the validity of the
LR statistic relies on correct specification of the model
for the disease odds . Robust score statistics are validv ′hh

asymptotically even when one misspecifies this model.
Further, robust score statistics require only null haplo-
type frequencies and are useful for situations in which
maximization of LOBS is difficult.

Permutation and Bootstrap Inference Methods

In a typical haplotype analysis, one or more sample
haplotype frequencies are estimated to be 0. In this sit-
uation, asymptotic inference using either the LR or ro-
bust score statistic proceeds assuming those haplotypes
with estimated frequencies of 0 have a true (population)
haplotype frequency equaling 0. If this assumption is
questionable, we can apply permutation approaches for
proper inference. We can apply a permutation test by
shuffling assignments to case and control samples and
calculating a test statistic for each permutation. For the
LR statistic, we assess significance by comparing the test
statistic for the observed data with the appropriate per-
centile of the distribution of test statistics calculated us-
ing the permuted data. For a score test, we assess sig-
nificance by first obtaining the average score statistic
(denoted by ) over the permutations. We then center

—
U
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the score statistic for both the observed data and for
each permutation by subtracting from and cal-

—
U Ubp0

culating

— —T �1S p (U � U) V (U � U) , (6)centered bp0 EMP bp0

where VEMP is the empirical variance-covariance matrix
of from the permutation samples. The permutation-Ubp0

based P value is the proportion of times Scentered, calcu-
lated using a permutation sample, exceeds the value of
Scentered calculated for the original data. The LR statistic
is not amenable to centering in this way. Note that cal-
culation of Scentered requires only inversion of a matrix
with dimension equal to the number of parameters in

. Further, Scentered may be valid in situations in whichUb

; for example, when the HWE model for the con-
—
U ( 0
trol haplotype frequencies does not hold.p ′hh

Estimates of relative risk parameters b can be obtained
using maximum likelihood. CIs can be constructed by
inverting the observed information matrix. As with score
tests, this approach is conditional on all haplotypes that
have estimated frequency 0 having true frequency 0. We
can also construct bootstrap CIs for parameters b by
resampling with replacement from the original data
(again, preserving the number of cases and controls),
estimating b for each replicate data set, and using the
percentiles of the estimated bs as confidence limits (Ef-
fron and Tibshirani 1998). The permutation approach
is numerically less intensive than bootstrapping, because
the estimated null hypothesis haplotype frequencies are
identical for each permutation.

Application to FUSION Data

We applied our haplotype method to a subset of data
from the FUSION study. A sample of 796 case subjects
with type 2 diabetes and 415 control subjects were ge-
notyped at five SNPs (distance between adjacent SNPs
!300 kb) found along a putative susceptibility region on
chromosome 22. We let 0 and 1 denote the two alleles
of each SNP. Previous work from the FUSION study
identified a putative susceptibility haplotype, 01100,
that may yield increased odds of type 2 diabetes (L.
Scott, personal communication).

The FUSION data set contained subjects with missing
genotype data at one or more of the five SNPs. Within
the sample, 131 (16.5%) of the case subjects and 82
(19.8%) of the control subjects were missing genotype
information for at least one SNP. Missing SNP genotype
rates in the total sample for SNPs 1–5 were 2.9%, 5.6%,
5.4%, 4.5%, and 2.3%, respectively.

We began our haplotype analysis of the FUSION data
by applying the EM algorithm to the combined sample
as well as separately to the case and control samples to
determine haplotypes present in the data set. Using these

frequencies, we determined the uncertainty of each hap-
lotype in the genotype data by employing the measure2Rh

of Stram et al. (2003a). To account for missing SNP
genotype data, we calculated using2Rh

2� N (H)p p 2�h h h1 2Hp(h ,h )�S(g) N (H)p p1 2 h h h1 2Hp(h ,h )�S(g)�n 1 2g � �n( ) g� p ph h ( )1 2g � p ph hHp(h ,h )�S(g) 1 2g1 2 Hp(h ,h )�S(g)1 2

2
2R p � ,h N (H) p p 2�h h h1 2Hp(h ,h )�S(g) N (H)p p1 2 h h h�n 1 2Hp(h ,h )�S(g)1 2g � �ng� p ph h ( )g 1 2 � p ph hgHp(h ,h )�S(g) 1 21 2 Hp(h ,h )�S(g)1 2

where , and denotes the number ofn p c � d N (H)g g g h

copies of haplotype h in H. Here, the multilocus geno-
types in the sum can include the value “missing” at any
of the individual loci.

We tested for association between each observed hap-
lotype and type 2 diabetes status using 1-df asymptotic
LR and robust score statistics based on LOBS in equation
(5), under the assumption of a multiplicative model. To
assess the accuracy of asymptotic results, we also cal-
culated permutation-based P values for the LR statistic
and Scentered from equation (6). Each permutation-based
P value was calculated using 10,000 random permuta-
tions of case and control status.

Using the LR and robust score statistics, we identified
those haplotypes with significant associations and in-
cluded them in more extensive analyses that fit recessive,
dominant, multiplicative, and general (two-parameter)
models for the odds of disease . If we let be an{v } d′ ′hh hh

indicator function that equals 1 when and 0 oth-′h p h
erwise, a model for the effect of a specific haplotype h*
takes the form for a recessive model,∗ ′ ∗b �b d d0 1 hh h hv p e′hh

for a dominant odds model,∗ ′ ∗ ∗ ′ ∗b �b (d �d �d d )0 1 hh h h hh h hv p e′hh

for a multiplicative odds model, and∗ ′ ∗b �b (d �d )0 1 hh h hv p e′hh

for a general odds∗ ′ ∗ ∗ ′ ∗ ∗ ′ ∗b �b (d �d �d d )�b d d0 1 hh h h hh h h 2 hh h hv p e′hh

model. Here, b1 (and b2 in the general odds model) is
the effect of h* on disease, and b0 is the intercept. We
calculated the AIC for each model and inferred the mech-
anism of genetic action by choosing the model with the
lowest AIC value (Akaike 1985). Finally, we used the
observed pattern of risk and protective haplotypes to
suggest an overall model for the effect of haplotypes on
the risk of disease in these data.

We computed asymptotic CIs for relative risk param-
eters by inverting the observed information matrix. To
determine whether these CIs had appropriate coverage,
we simulated data sets using parameters that match es-
timates from the FUSION data and plotted the empirical
coverage of CIs (the proportion of intervals containing
the true parameter) as a function of the nominal cov-
erage of the CI. A straight line for this plot indicates
appropriate coverage.
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Table 1

Haplotype Frequencies and Association Test Statistics for FUSION Data Set

HAPLOTYPE

FREQUENCY

2Rh

LR STATISTIC ROBUST SCORE STATISTIC

Control Case
LR Statistic

Valuea

Permutation-Based
P Value

Asymptotic
P Value

Robust Score
Statistic Value

Permutation-Based
P Value

Asymptotic
P Value

00011 .0042 .0066 .0155 .2910 .6145 .5896 .3154 .6175 .5744
00100 .0035 .0034 .0131 .0092 .8866 .9238 .0093 .8801 .9213
00110 .0018 .0007 .0024 .1927 .8010 .6607 .1615 .8085 .6878
01011 .1292 .1344 .4503 .1953 .6548 .6585 .2108 .6708 .6461
01100 .2514 .3183 .7322 12.7004 .0008 .0004 13.1913 .0009 .0003
01101 .0012 !10�6 .0010 2.1258 .2305 .1448 1.0020 .2306 .3168
01110 !10�6 .0046 .0088 3.5869* .1000 .0582 3.0910 .1299 .0787
01111 .0019 !10�6 .0019 3.4588 .0944 .0629 1.1913 .0944 .2751
10000 .0136 .0139 .0342 .1510 .7009 .6976 .1497 .6988 .7005
10010 !10�6 .0012 .0025 1.1656* .5503 .2803 1.5557 .5509 .2123
10011 .3574 .2884 .7036 12.1775 .0007 .0005 11.8723 .0007 .0006
10100 .0520 .0596 .3154 .2555 .6049 .6133 .2770 .6237 .5987
10110 .0317 .0319 .2680 .0644 .8004 .7997 .0655 .8081 .7981
11011 .1391 .1290 .3875 .8258 .3585 .3635 .8394 .3622 .3596
11100 .0110 .0092 .0289 .0160 .9036 .8993 .0166 .9187 .8976
11110 !10�6 .0013 .0019 1.4940* .2907 .2216 .8190 .2977 .3655
11111 .0020 !10�6 .0015 3.7632 .0041 .0524 1.1953 .0041 .2743

NOTE.—LR and score statistic values are for 1-df association tests assuming a multiplicative model. is the haplotype uncertaintymeasurement2Rh

of Stram et al. (2003a). Results significant at Bonferroni-corrected P value of .003 are shown in boldface italic type. Permutation P values are
based on 10,000 replicates.

a Statistics calculated by reversing the roles of case and control subjects are indicated with an asterisk (*).

Results

Application of the EM algorithm to the case and control
samples uncovered 17 haplotypes in the sample from the
FUSION data set. Table 1 gives the frequency of each
haplotype in the case and control samples. Table 1 also
provides the values for each of the observed 17 hap-2Rh

lotypes in the data set. The value for each observed2Rh

FUSION haplotype was �0.7322, which indicates con-
siderable haplotype uncertainty, given the genotype data.
On the basis of these results, application of a pro-2Rh

spective model that assumed HWE in the study popu-
lation would likely yield biased estimates of haplotype
effect (Stram et al. 2003b).

In addition to haplotype frequencies and values,2Rh

the table provides the 1-df LR statistic and robust score
statistic values for each haplotype, under the assump-
tion of a multiplicative model, calculated using both
asymptotic theory and a Monte Carlo approximation
to the permutation distribution with 10,000 random
reassignments of case and control status. In the absence
of multiple testing issues, we can compare each test with
a prespecified cutoff P value (.05 or .01). Given that we
test 17 hypotheses in table 1, the Bonferroni procedure
corresponds to comparing each P value with .05/17 ≈

or ..003 .01/17 ≈ .0006
Our results in table 1 show that we observed some

haplotypes only in case subjects (e.g., 01110), whereas
we observed other haplotypes only in control subjects
(e.g., 01101). Although we estimate the relative risk

parameters b to be infinite in such situations, we found
that none of these haplotypes were significantly asso-
ciated with disease after adjusting for multiple com-
parisons. We also found that our ECM algorithm had
difficulty converging when modeling the effect of a hap-
lotype found only in case subjects. This occurs because

, so that, as estimates of decrease, es-r ∝ v p p′ ′ ′ ′hh hh hh hh

timates of must increase, but in such a way that theirv ′hh

product gives a finite value for . This difficulty doesr ′hh

not arise for haplotypes found only in controls, because
estimates of are finite and both and can tendp v r′ ′ ′hh hh hh

towards 0. As a result, for haplotypes found only in
cases, we reverse the roles of case and control and es-
timate , the odds of being disease-free given the hap-�1v ′hh

lotype, instead. Because this trick requires the case pop-
ulation to be in HWE, we can apply it only for the
multiplicative model. We indicate LR statistics calcu-
lated using this approach with an asterisk in table 1.
We note that our score statistics are invariant when we
switch the roles of case and control subjects.

Asymptotic and permutation-based P values generally
agreed and were meaningfully different only when a
haplotype was absent in either case subjects or control
subjects. The only exception to this finding was for hap-
lotype 00110, which has such a low frequency that rep-
licate data sets generated in the permutation procedure
were likely to have that haplotype appear only in cases
or only in controls.

Examination of the LR and score statistic values in
table 1 revealed that only haplotypes 01100 and 10011
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Table 2

Model Selection for Risk Haplotype 01100 from FUSION
Data Set

Model b (95% CI) AIC

Recessive .32 (.03 to .60) 6641.3
Dominant .27 (.05 to .48) 6640.0
Multiplicative .35 (.15 to .54) 6633.2
General .33 (.10 to .55); .40 (.11 to .69) 6635.1

Table 3

Model Selection for Protective Haplotype 10011 from FUSION
Data Set

Model b (95% CI) AIC

Recessive �.22 (�.52 to .08) 6643.9
Dominant �.33 (�.55 to �.11) 6637.0
Multiplicative �.33 (�.52 to �.15) 6633.8
General �.35 (�.57 to �.14); �.28 (�.59 to .02) 6635.6

were significantly associated with disease at a Bonfer-
roni-corrected P value of .003. We incorporated these
two haplotypes in more extensive analyses to determine
which model (recessive, dominant, multiplicative, or
general) best describes each haplotype’s effect on type
2 diabetes. We present the results of these analyses for
haplotypes 01100 and 10011 in tables 2 and 3, re-
spectively. For both haplotypes, we determined that a
multiplicative model had the lowest AIC value. Note
that, for the general model, the effect of the first copy
of the haplotype (0.33 for 01100 and �0.35 for 10011)
was nearly equal to the effect of the second copy of the
haplotype (0.40 for 01100 and �0.28 for 10011),
which also suggests a multiplicative model for each
haplotype.

Figure 1 shows the empirical coverage of CIs for the
relative-risk parameter of haplotype 01100. We as-
sumed that haplotype 01100 had a multiplicative effect
on disease, with relative risk parameter cor-b p 0.35
responding to the value in table 2. We simulated 10,000
data sets with the same numbers of case and control
subjects and the same haplotype frequencies as the FU-
SION study. The straight line in figure 1 suggests that
the CIs in tables 2 and 3 are reliable.

Results in table 2 indicate that haplotype 01100 is a
susceptibility haplotype that increases the odds of dia-
betes (since the values of b in table 2 are positive). This
result supports the previous finding from the FUSION
study. However, table 3 shows that haplotype 10011 is
protective against diabetes (since the values of b in table
3 are negative). It is interesting to note that these two
haplotypes have no SNP allelic variants in common,
which suggests that we consider a model with an overall
risk score corresponding to the number of SNP variants
in common with the disease-susceptibility haplotype
01100. Results from the model show that each addi-
tional SNP variant that agrees with that of haplotype
01100 increases the risk (on the log scale) by 0.087
(95% CI .045 to .129), so that the odds ratio of diabetes
for an individual with two copies of haplotype 01100
relative to an individual with two copies of haplotype
10011 is . This model yielded an AIC of10∗(0.087)e ≈ 2.39
6629.3, which is lower than any individual model
shown in tables 2 and 3. This finding suggests this model
fits the FUSION data better than any previous model

in tables 2 and 3. We also fit a two-parameter model
that allowed for independent multiplicative action of
haplotypes 01100 and 10011. This two-parameter
model yielded an AIC of 6631.4, so we prefer the model
that counts agreements with the risk haplotype.

Discussion

We have developed a unified likelihood-based frame-
work for estimating and testing the effects of specific
haplotypes or haplotype features on disease under the
assumption of a case-control study design. We believe
that our proposed method will facilitate the identifica-
tion of genetic variants that influence complex disease.
Our approach can accommodate, test, and estimate mul-
tiple haplotype effects under a variety of different genetic
mechanisms. In addition to a simple and natural like-
lihood formulation, our approach also allows us to char-
acterize which models for the effect of haplotype on
disease risk are identifiable. Although derived within the
context of our approach, these results should be appli-
cable to other haplotype inference approaches as well,
since they are based solely on the effect of changes in
the disease risk model and the probability of the ob-
served genotype.

One attractive feature of our approach is that our pa-
rameterization of the likelihood is retrospective and prop-
erly accounts for the case-control sampling design. There
are a number of advantages of a retrospective approach
over a prospective approach. First, many prospective-
likelihood methods (such as those developed by Schaid
et al. [2002] and Zaykin et al. [2002]) are limited to
hypothesis testing, because haplotype frequencies are
stratified by disease status under the alternative hypoth-
esis. Even if a multiplicative model holds, so that both
case and control populations are in HWE, the study
(pooled) population is not in HWE except under the null
hypothesis. Stram et al. (2003b) demonstrated that ap-
plication of a prospective likelihood to case-control data
yields biased estimates of haplotype frequencies and odds
ratio parameters under the alternative hypothesis when
substantial haplotype ambiguity exists in the sample. In
our approach (as in that of Zhao et al. 2003), we assume
HWE only in the control population.

A second potential advantage to a retrospective ap-
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Figure 1 Empirical coverage of CIs for the relative-risk parameter b of haplotype 01100. Results are based on 10,000 simulated data
sets with the same haplotype frequencies as the FUSION data. Haplotype 01100 has a multiplicative effect on disease risk, with .b p 0.35

proach involves efficiency. Carroll et al. (1995) showed
that variance estimates obtained from fitting a pro-
spective model to retrospective data may be larger than
those obtained from fitting a proper retrospective model
when one restricts the distribution of (H,G) in some
way. In haplotype analyses, the assumption of Hardy-
Weinberg equilibrium in the sample is such a restriction.
Note that, if we knew H unambiguously, we could ef-
ficiently test the null hypothesis of no haplotype-disease
association in the case-control samples using the pro-
spective likelihood (Prentice and Pyke 1979).Pr [DFH]
Because our approach is based on the retrospective like-
lihood that describes the way the study data were col-
lected, it is (asymptotically) optimally efficient.

Finally, because our approach is likelihood-based, we
can apply model selection criteria such as the AIC
(Akaike 1985) to determine the best model for haplo-
type effects on disease risk. We have illustrated this ap-
proach in our analysis of data from the FUSION study.
The question of the best way to select a haplotype model
when one uses a large number of SNPs is of great im-

portance. Although the approach we have presented
here is a starting point, we believe additional work is
needed in this area.

Although our retrospective method has some ap-
pealing features for haplotype analysis, it also has lim-
itations. A major assumption in our approach is that
haplotypes from control subjects are in HWE. To de-
termine the effect of HWE departure on our method,
we performed additional simulations in the context of
the FUSION data set. We simulated haplotype data
through use of the same haplotype frequencies and num-
bers of case and control subjects as in the FUSION
study, but we used a common fixation index, F p

, for each haplotype pair in the control population0.05
(resulting in a departure from HWE in the control sam-
ple). We then simulated models in which haplotype
01100 acted according to a multiplicative, dominant,
or recessive mechanism with the disease relative-risk
parameter , �0.35, and 0.35. We generated 500b p 0
data sets for each disease model and calculated asymp-
totic and permutation-based P values of the robust score
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Table 4

Effect of HWE Departure in Control
Subjects for Testing H0: bp0

MODEL AND b

P VALUES OF ROBUST

SCORE STATISTIC AT

NOMINAL a p .05

Asymptotic Permutation

Multiplicative:
.0 .050 .061
.35 .962 .966
�.35 .938 .936

Recessive:
.0 .200 .054
.35 .918a .334
�.35 .194a .374

Dominant:
.0 .108 .050
.35 .636a .788
�.35 .962a .764

NOTE.—Control haplotypes were simulated
under the assumption that inbreeding coeffi-
cient .F p .05

a P value not valid, owing to incorrect size.

statistic for testing . We calculated permuta-H :b p 00

tion-based P values using 1,000 random permutations
generated under the null hypothesis for each data set.

Table 4 presents the simulation results when the HWE
assumption is violated. We see that departure from
HWE has negligible effect for the multiplicative model.
Further, parameter estimates from the multiplicative
model remained unbiased (results not shown). However,
for dominant and recessive models, the asymptotic P
values of the robust score statistic were markedly in-
flated under the null hypothesis, and estimates of b were
noticeably biased downward for dominant models and
upward for recessive models (results not shown). In con-
trast, the centered permutation score statistic described
in equation (6) had appropriate size and still had good
power to detect alternatives. On the basis of these re-
sults, we recommend that all P values for dominant or
recessive models be validated using the centered per-
mutation score test. Further, we caution that parameter
estimates for nonmultiplicative models may be suspect
when asymptotic and permutation-based P values dis-
agree. The approach of Zhao et al. (2003) may be more
robust to departure from HWE in the control popula-
tion; further study of this issue is warranted.

A second limitation of our method relative to other
haplotype methods is that it does not allow currently
for environmental covariates. Although we believe we
can extend our approach to incorporate covariates, this
extension is nontrivial, whereas the approach of Zhao
et al. (2003) easily accounts for covariates. We will con-
sider this extension in a future manuscript.

Our analysis of the FUSION data suggests some
guidelines as to when asymptotic results are reliable and
when a resampling approach is necessary. In general,
we found that asymptotic P values were accurate when
the proposed model included only those haplotypes that
are frequent enough such that permutation- or boot-
strap-based replicate data sets are unlikely to assign
such haplotypes exclusively to either case subjects or
control subjects. However, for modeling the effect of
low frequency haplotypes, we recommend a resampling-
based approach.

Although we use an iterative algorithm to maximize
the likelihood, it is sufficiently fast to allow for large-
scale simulation studies. Analyses of 10,000 replicates
for determining the permutation-based significance level
of haplotype 01100 in the FUSION data set under a
multiplicative model took ∼1 h on a Dell Latitude C840

with an Intel Pentium 4 processor. We note that esti-
mation of relative-risk parameters for haplotype anal-
yses can take substantially longer when there is a great
imbalance in the haplotype frequencies between cases
and controls. Our software is available upon request.

In this article and in our software implementation,
we have considered haplotypes comprised of SNPs. In
fact, the approach presented here is not limited to SNPs
and is applicable to any marker loci. Genotypes cor-
responding to microsatellite loci, however, result in
much less phase uncertainty. As a result, the strategy of
reconstructing the individual haplotypes and analyzing
the reconstructed data as if phase information were
known incurs a smaller error when using microsatellite
loci relative to SNPs.
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Appendix A

Identifiability Conditions of v

For a given set of parameters b and p, nonidentifiability in the model for occurs when a change in the
T ′X bhhv p e′hh

parameter vector b does not produce a concomitant change in for at least one genotype g that isPr (G p g dD p 1)
observed among the cases. Using equation (4), we can write . ForPr (G p g dD p 1) ∝ � v p p ∇ p′ ′′ hh h h b(h,h )�S(g)

and some vector g, remains unchanged if or if(�/�b ,�/�b , … ,�/�b ) Pr (G p g dD p 1) g∇ (� p p v ) p 0′ ′′1 2 R b h h hh(h,h )�S(g)

for every genotype g. Define the gradient vectorg∇ (� p p v ) p c′ ′′b h h hh(h,h )�S(g)

D p ∇ p p v p p p v X , p p v X , … , p p v X ,′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′� � � �g b h h hh h h hh hh ,1 h h hh hh ,2 h h hh hh ,R( ) ( )′ ′ ′ ′(h,h )�S(g) (h,h )�S(g) (h,h )�S(g) (h,h )�S(g)

where is the rth element of . Let D be the matrix whose gth row is . Then the conditions we wish toX X D′ ′hh ,r hh g

impose are (1) and (2) for any , where 1 is the vector with all components equal to 1. WeDg ( 0 Dg ⊥ 1 g ( 0
can verify the first condition by ensuring that has full rank—that is, that the eigenvalues of are allT TD D D D
nonzero. We ensure the second condition by confirming that .TD 1 p 0

Appendix B

The ECM Algorithm for Updating b and p

In this appendix, we describe the ECM (Meng and Rubin 1993) algorithm used to maximize the observed
likelihood LOBS. The ECM algorithm is a variant of the EM algorithm that proceeds iteratively, with each iteration
consisting of an E step and two CM (conditional maximization) steps. The E step imputes missing haplotype data,
given current parameter estimates and observed genotype data. The first CM step updates b (conditional on fixed
p), and the second CM step updates p (conditional on fixed b). Our ECM algorithm consists of cycling between
these three steps. In the standard EM algorithm, the parameters b and p would be updated simultaneously.

Full-Data Likelihood (LFULL)

If phase information were known, we could write the likelihood as

T ′ ′(X b)d mhh hh h� e �ph( ) ( )′(h,h ) h
′ ′c dhh hhL p p r p , (B1)′ ′� TFULL hh hh ′X b dhh′h,h � e p p ′( ) h h( )′(h,h )

where and denote the number of controls and cases with haplotype pair (h,h′), respectively, and denotesc d m′ ′hh hh h

the number of copies of haplotype h among cases and controls combined.

E Step

At the start of the ( )th step, we have available estimates of parameters b and p from the previous iteration,k � 1
which we denote by and . The E step estimates the number of control subjects with haplotype combination(k) (k)b p

to be′(h,h )

(k) (k) ′ ( )p p I (h,h ) � S g′ { }h h
(k�1)c p c′ �hh g (k) (k)� p pg h h1 2

h ,h �S g( ) ( )1 2
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and the number of case subjects with haplotype combination to be′(h,h )

T (k)′X b (k) (k) ′hh ( )e p p I (h,h ) � S g′ { }h h
(k�1)d p d′ � T (k)hh g X b (k) (k)h h1 2� e p pg h h1 2

h ,h �S g( ) ( )1 2

Here, equals 1 when the haplotype pair is consistent with genotype g and equals 0 otherwise.′I {(h,h ) � S (g)}

CM Step to Update b

Using and , we update by maximizing the log-likelihood of equation (B1) with respect to b.(k�1) (k) (k�1){d } {p } b′hh h

The log-likelihood of the part of likelihood (B1) that is proportional to b is

T ′(k�1) (k�1) T X b (k) (k)hh( )log L ∝ d X b � d log e p p .′ ′ ′� �b hh hh h h( )′ ′(h,h ) h,h( )

We maximize this log-likelihood through use of a quasi-Newton algorithm that incorporates the relevant score
equations of b. The score vector is given by

T ′X b (k) (k)hh(k�1) � X e p p′ ′( )d log L hh h hb ′h,h( )(k�1)p d X � d .′ ′� Thh hh ′X b (k) (k)hh′db � e p p ′(h,h ) h h′h,h( )

Because of the similarity between this maximization and logistic regression with an offset term, we find this
optimization to be numerically stable. Unlike Newton-Raphson or Fisher-Scoring algorithms, this quasi-Newton
algorithm does not require inversion of Hessian or information matrices when updating b.

CM Step to Update p

Unlike the CM step to update b, some care must be exercised in updating p. The log of the likelihood (B1) that
depends on p is

T (k�1)′(k�1) (k�1) X bhh( ) ( )log L ∝ m log p �d log e p p .′� �p h h h h( )′h h,h( )

The score equations corresponding to maximizing this log-likelihood subject to the constraint are� p p 1hh

T (k�1)′X bhh� e p ′(k�1) hm ′hh � 2d p p 2n � 2d p 2c ,T (k�1) hX bh h1 2p � e p ph h h1 2
h ,h( )1 2

where 2c, 2d, and 2n are the number of control haplotypes, case haplotypes, and total sample haplotypes, re-
spectively. We can rewrite these equations as

mhp p ,h (k�1)2c � 2du(p,b )

where

T (k�1)′X bhh� e p ′h′h(k�1)u(p,b ) p .T (k�1)′X bhh� e p p ′h h′h,h( )
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We solve for p iteratively, using as a starting value, then calculating using(k) (k,0) (k,s�1)p { p ph

mh(k,s�1)p ∝ ,h (k,s) (k�1)2c � 2du(p ,b )

and then normalizing . It is not necessary to carry this iteration to completion for each CM step to increase(k,s�1)ph

speed of computation. In our simulations, we used two iterations at each CM step. Note that, because and umh

are always nonnegative, estimates of p from our algorithm always form a proper probability density function.

Convergence of the ECM Algorithm

To start the ECM algorithm, we first estimate parameters p, under the assumption that , using our im-b p 0
plementation of the standard EM algorithm proposed by Excoffier and Slatkin (1995) and by others. Following
Fallin and Schork (2000), we restarted this null-model EM algorithm 10 times at randomly chosen starting values.
Then, starting at the null values of p, we iterated the ECM steps until the parameters b and p converge. Early
simulation results suggest that a convergence criterion of

(k�1) (k) (k�1) (k) �82 2� ( ) ( )b � b � p � p ! 10� �r r h h
r h

is adequate for termination of the ECM algorithm. This value is smaller than the values (10�5 or 10�6) chosen by
Fallin and Schork (2000). However, when we applied our approach using these typical criteria, our empirical type
I error rates for five-SNP haplotype data sets were anticonservative and were often double or triple the nominal
type I error rate (data not shown). Moreover, our estimates of haplotype frequencies and effect size were less
accurate when was used, compared with when was used (data not shown). An alternative strategy�6 �8� ! 10 � ! 10
is to base convergence on the derivative of LOBS, which we can easily compute.
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